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Motivation

• This was a tutorial for the 1994 BIW !!

• At the time I thought it was useful since we were
introducing a lot of “Smart” Instruments
– Parameters supplied to the control room needed to be

analyzed from the raw data

• Flying Wires, Sync Lite, IPM, CPM, SBD

– Instruments were being developed (hardware and software)
by engineers and techs in the department

• Idea was/is to supply a refresher course + some of
the backgrounds for how this stuff works.

• And I enjoy this stuff--actually find it fun to do.

Data Reduction and Precision Measurements

• Some individual instruments produce 100’s of
kbytes of data every measurement cycle.
– Although it is possible to display directly as a

comfort display---e.g. Sync Lite Video Beam
image, usually the MCR wants a distilled down
version of the data--”sigma” for example



Data Reduction and Precision Measurements

• For other instruments, you want to calibrate
the detector response
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Parameterization of complex data by simple functions

• Sometimes it is useful to apply the Statistical
“Mechanics” to extract other useful
information
– For Sync Lite, I wanted to calculate the light

produced at the edge of a Tevatron Dipole
• Fit Magnet factory data to an analytic function that I could

then plug into a formula for photon production.



Simple Statistics---a refresher

• It is important when undertaking a
measurement that a “True” value actually
exists.

• The measurements then represent an attempt
to find that “True” value
– From our data, we often represent the “True

“ value” from the average, or mean of the
measurements

– If we look at the width (or spread) of the measured
data, then if that width is small we have
confidence that the mean is a good representative
of that “True” value

• A large width typically gives us less confidence that we
know the “True” value

Simple Statistic---a refresher (2)

• Define Pi for a discrete distribution or P(x) for a
continuous distribution as the probability that given
the “True” value, that when we make an individual
measurement we get the number i, or x
– Discrete distribution would be like the numbers on a roulette

wheel, whereas a continuous distribution would be the
probability of measuring a distance.

• We can define the first few moments of the probability
distribution
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Simple Statistic---a refresher (3)

• From the variance we can define a width,
– aka standard deviation !

– aka sometimes root mean square (rms)
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Simple Statistic---a refresher (4)

• There are other semi-common moments we
use (3rd and 4th) from which we can derive
other parameters
–  skew from third moment (symmetry around peak)

• Does peak=mean?

–  kurtosis or kurtosis “excess” (how “peaky” the
distribution is)

• Gaussian or Normal distribution has kurtosis “excess”=0

• For an arbitrary distribution, all moments
matter, but usually we use the low order (1st
and 2nd!) moments to simplify discussing the
results of a series of measurements



Sample Mean and Variance

• If we make N measurements of a quantity, we can
define a sample mean  and sample width

– Sample mean and sample width are estimates or
the probability distribution µ and ! respectively
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• This last slight of hand was added to reflect the fact that we
have used the data once to calculate s, and in a sense have lost
one of the degrees of freedom in the N data points

– Also note that s is not defined for N=1!

– In limit of large N, not much difference

• Define

! 

µ = lim
N"#

x    and  $ = lim
N"#

s

Sample Mean and Variance:
Resistor measurement

• Measure the resistance of fifty-one 5% 1 M" 
1/4 watt Carbon resistors

– All from same box

– Actually I was interested because I wasn’t sure

what the 5% spec really meant.

– Used Fluke DMM

• Manufacturer spec was 0.5% accuracy for resistance

measurements

• Measured a single resistor many times and found

fluctuations were < 0.2%

– Precision of DMM (and my measuring) was pretty good

• How to verify absolute accuracy??



Sample Mean and Variance:
Resistor measurement results

• Mean=1021 k"

• s = 22k" (2.2%)

• Standard deviation of Mean=3.1k"

– not yet defined.

• What is significance of the result?
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Common Probability Distributions-

Binomial

• Gives the probability of m successful

outcomes out of N independent trials

– Probability of success = p

• Probability of failure = 1-p

• This is a Discrete Distribution since the

observables, m (# of successes) are integers.
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P m, p,N( ) =
N!p

m
1" p( )
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Common Probability Distributions-

Binomial--Examples

• Flip a coin 10 times

• How many times you
get tails?
– 10 tails    0.00098

– 9 tails      0.00977

– 8 tails      0.04395

– 7 tails      0.11719

– 6 tails      0.20508

– 5 tails      0.24609

– 4 tails      0.20508

• µ = 5.00 (of course!)

• ! = 1.58

• !/µ = 32%
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Common Probability Distributions-

Poisson

• Probability of m successful observations
when the mean is µ

• Poisson distribution can be shown to be a
limit of Binomial distribution
– N (number of trials) >>>1

– p (probability of success) <<<<1

– However limit N*p -> finite = µ

• One beloved feature of Poisson Distribution
–

• Example is Radioactive decay

! 

P(m,µ ) =
µ m

e
"µ

m!

! 

" = µ



Common Probability Distributions-

 Normal aka Gaussian

• Probability of observing x when the mean is µ and
standard deviation = ! 

• Normal distribution can be shown to be a limit of
Binomial distribution when
– N (number of trials) >>>1

• This is a continuous distribution

• The Gaussian or Normal (or Bell Shaped) Distribution
is found everywhere, and we will later see it is a limit
of many distributions.
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Common Probability Distributions-

Uniform Distribution

• Continuous Distribution

• Easily generated on calculators by scaling the
random number generator built in

•

• Can often serve (with care of course) as a “poor
man’s” Gaussian using µ and ! accordingly.
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Common Probability Distributions

Comparison
• Binomial, Poisson, Gaussian, Uniform

• 12 trials, p=1/12, others are scaled to match µ & !
– µ = 1, ! # 1

– Note first two have points only for x>1
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Common Probability Distributions

Comparison

• Binomial, Poisson, Gaussian, Uniform
– 240 trials, p = 1/12, others are scaled to match µ and !

– µ = 20, ! = 4.3
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Propagation of Errors-Analytic Approach

• Suppose we want to measure the length “L” and
width “W” of a rectangle and want to determine the
area “A”.
– There are uncertainties in “L” and “W”, (!L and !W)

– What is the uncertainty in “A”, !A?
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Expand about “true” values

Square and average,

since L and W

measurements are

considered independent

Of each other, cross

terms average to 0.

Propagation of Errors-Analytic Approach

• In general for a quantity R(r1, r2, r3,…ri …)
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• Some common functions
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Propagation of Errors-Analytic Approach
Example- Uncertainty in the mean determined from N measurements

• Recalling how we make the mean (average) from a quantity of
measurements, you can see that we should be able to determine
the uncertainty in the mean by propagating the error using the
formulism just developed
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• This is a very important derivation!
– For example, doubling the number of measurements only will

improve the statistical uncertainty in the mean by ~41%

Example of Uncertainty in Mean

• Suppose we toss a coin N=100 times, and record the
number of times it comes up tails.
– Call this X a “Run”

– Now lets do  M Runs like that.

• Call Pest= µ of the M Runs of X
– How big should M be if we want to measure Pest to 1%?

– Flipping a coin is covered by the Binomial distribution

• Each Run of N=100 tosses of X should be distributed with a
mean of Np = 50 and != (Np(1-p))1/2 = 5.

• 1% uncertainty in 50= 0.5, so to reduce 5 to 0.5
– !µ= !/M1/2 =5/M1/2 < 0.5  or M~100

– Equivalent to 10000 flips (MxN)! (which is another way to look at
problem)

• See LV demo.



Propagating Errors- Monte Carlo Technique

• Analytic approach to error propagation
basically assumed that only the first order
terms in a Taylor’s expansion are important.
– There is a problem when R is at a (functional)

maximum or minimum, because then the first
derivatives are =0

• Note R=cos(r) when r is near 0.

• Problem is that in this case you need to consider the
higher order derivatives.
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R = cos r( ),     "R
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= tan(r)"

r

Propagating Errors- Monte Carlo Technique

• Sometimes it is just easier to consider a Monte Carlo technique
to understand how a quantity depends on its many variables.

• Randomly generate the independent variable with an appropiate
width distribution that reflects actual  distribution.

– For each set of randomly generated variables ri, calculate R.

– Histogram R to see its distribution

• Histogram of R = cos(r) for r generated from uniform distribution
with r = 0.0+0.1

– Note function is not symmetric around cos(r)=1

 

Cos(r)



Central Limit Theorem-
Why Daddy is everything a Gaussian?

• Given an arbitrary distribution which has the mean µ
and variance (!2) defined:

• Central Limit theorem says that the the Average of
the N measurements is distributed as a Gaussian
with standard deviation !/N1/2

• Handwaving explanation is that most of our
measurements are really due to the average of many
processes at the microscopic level.
– Example: DMM Current measurements are measuring ~1023

electrons, each moving according to a Maxwell Boltzman
Distribution. Yet our measurement will look (probably)
gaussian.

Central Limit Theorem-
 Illustration of Central Limit Theorem

• The Histogram of 10000 “experiments” (LV Demo)

– Each experiment involves calculating the mean value for N=
100 data points generated from a Uniform Distribution of
Width=5units and Mean=3.5units (!=1.44)

– Histogram in White is of the means from each experiment

– Red curve is a Gaussian whose area=10000 with
!m = !/N1/2 =0.1* !



Estimation of Parameters from Data

• Up to now we tend to have been talking about
measuring a single quantity “Ri” at a single
point “X” (or perhaps at a common 2 or 3 D
point (x,y,z). Sometimes x is just the index.

• Now lets consider that we measure a function
f(x) at multiple x points.

• We assume we a priori know the functional
relationship between f and x

• E.g.
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polynomial  f(x) = a0 + a1x + a2x
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gaussian      f(x) = a0e
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Estimation of Parameters from Data

• What we measure are the fi values at

the points xi, and we would like to find

the parameters a0, a1, a2,… which

describe our data the best.

• How do we do this??



Principle of Maximum Likelihood

• aka Principle that nature plays fair!

• The Principle of Maximum Likelihood

says the values of the parameters a0,

a1, a2,…which maximizes the probability

of measuring our data points f(xi) are

the best estimates we can have of

those parameters.

End Pt 1



Principle of Maximum Likelihood-Example

• Suppose we measure a series of points yi at
xi. (y(xi))
– Furthermore lets say we believe that a linear

relationship exists between y and x
• y(xi)=a0+a1x

• For the sake of argument, we will assume that there is no
uncertainty in the “x” value, but all measurement
uncertainties are in y. In other words we pick an “x”
position, and measure y.

• The uncertainty (“error”) in each yi measurement is
described by a probability distribution ----the
uncertainties may vary at different yi values.

– Yi, !i, xi

» Note the uncertainty may involve more than just a
single !I, but we will label it that way here.

Principle of Maximum Likelihood-Example

• Probability of measuring yi at xi

– The crest of the curve represents the “true” curve that
generates our particular data points.

• We can measure a “y” at each point “x” , the relative probabilty
being given by the curve.

• You can see it is most probably, in this case to measure a point
on the crest

• The probability distribution
shown here is a normalized
Gaussian, whose ! varies
as y1/2(x).

• The crest function is
y(x)=10+10x



Some other examples

Principle of Maximum Likelihood-Example

• We will generate some data using a Monte Carlo generator, for

– Uniform distribution

• yi= (10+10*xi)*[wi*(ran-0.5)]

– “ran” generates a number between 0-1

– with wi= yi
1/2

• The error bars shown on the data are the uniform widths.

• The explanation for the curves will be explained later
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Principle of Maximum Likelihood-Example

• Generate data using a Normal uncertainty distribution with

– !y=y1/2

• This is a Cumulative Distribution Function for a Normal Distribution

– Just the integral of the Normal distribution function

–  centered at yi=25 & ! yi = 251/2 =5

– Use “ran” to generate a number between 0->1, say get 0.67

– Find 0.67 on vertical axis, find value for “yi”(~26.9) on horizontal axis

• histogram uses procedure to generate 1000 “datapoints”

• RHS Plot shows “data” yi for xi ={0,1,2,3,….10} (y(x)=10+10x)

MC generated data @

xi ={0,1,2,3,….10}

MC generated data @

yi ={25} (1000 times)
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Maximum Likelihood- How to calculate?

• We have the data points {yi} and the probability
distributions for each point
– Recall Uniform and Normal Distributions which scale

their widths (w and !) as Sqrt[yi]

• Probability to see the particular set of data
points is just
– Ptotal = $iPi

– Where Pi=Probability to observe yi given y(xi,a0,a1)
• Scan over {a0,a1}

– For each set use y(xi,a0,a1) as the hypothesis, used to make
probability distribution. Then calculate the probability to
measure measure yi for that distribution.

– Multiply all individual Pi together,…

– Go to next  {a0,a1} set and redo.



ML-Examples
• Left graphic is Uniform ML, Right is Normal ML

– Note that Uniform Distribution is either 0 or a max value,
because the probability for any data point is either 1/w if
within window, or =0.

• The lines shown on 2D plot were taken from the edges of this
parallelogram

• What is best estimate? We cannot tell using on ML method

– Maybe we could choose the center or the parallelogram, but is is
no more likely than any other.

– For Normal distribution, there is a peak in a0 and a1. This
peak represents our best estimate of the parameters

Development of Least Squares Fitting.

• If the underlying Probability distributions are “Normal”

Distributions, then some wonderful things happen.

• In this case the Likelihood function is
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Development of Least Squares Fitting (2).
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•  yi is our data

• y(xi, a0,a1,a2,…..) is our hypothesis

• !(xi) is our estimate of the uncertainty (may depend
on xi but in principle not on the ai)

– If last statement is true, then the complete
dependence of the likelihood depends on the
argument of the exponential

• Maximizing L is equivalent to minimizing

• Chisquare
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Linear Least Squares Fit

• We can gain some insight by expanding %2 in a second

order Taylor’s series about its minimum
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• First term is just value of %2 at the minimum

• Since we are at the minimum the second term
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• Nomenclature is “i” is the “ith” data point, “j” is the “jth”
parameter aj



Linear Least Squares Fit (2)
• To be = 0 for arbitrary daj, each of the linear terms is set =0

• IF y(xi,a0,a1,…) is a LINEAR function of the a’s

• The math simplifies even more, and we have what is known
as a Linear Least Squares Fit

– Note that y(x,a) is not necessarily linear in x, the
independent variable

– Doing the derivative and collecting terms we end up with
a matrix equation

–         {&}a=', 
• {&}being known as the “curvature” matrix, “a” is just the

parameter vector and ' the data vector
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(xi )aj
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Linear Least Squares Fit (3)

• Note that {&} does not actually depend on the measured
data!
– Does depend inversely on the square of the uncertainties

• ak are just our desired parameters that we want to
determine

• The ' vector holds all the dependence on our
actual measured data (in the yi)

• Solution means we need to invert {&}-> {&}-1={(}
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LLSF (4)

– {(} is also known as the “Error” Matrix
• Can probably guess what that is going to mean!

! 

(a) = "{ }
#1

($ ) = %{ }($ ) or

aj = % jk$k  .

• 2nd Derivative terms from %2

– it contains {&}, the “curvature” matrix
• Now you can see why we called it that

• {&} represents how curved the surface is

– Recall that {&} was inversely proportional to !i
2, the uncertainties in

the measurements. Small !i implies a steeply rising %2 surface.
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LLSF (5)- Errors of the determined parameters ai

• Now that we can determine the “fit”,it is reasonable
to ask how well are the parameters known.

• Since the source of uncertainty was the data itself,
the error in the ai must come from there.
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…Lots of formulae…<snip>  …see preprint
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• Or as was hinted, the elements (jl of {(}, the error
matrix are related to the errors in the parameters
– Note that in general the non-diagonal terms are not zero



LLSF:Example

• Use y(x)=10+10x, generate

! 

xi = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10[ ]
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LLSF :Example (2)

• Solving for the parameters and errors

•
Recall data generated with a0, a1=10

• Also
– Degrees of freedom = # data points-number of fit

parameters (=11-2 in this case)

– What does value %2 mean?

! 

a( ) = "{ } #( ) =
10.1

9.56

$ 

% 
& 

' 

( 
) =

a0

a1

$ 

% 
& 

' 

( 
) =

constant

slope

$ 

% 
& 

' 

( 
)      * a

=
"11

"22

$ 

% 
& & 

' 

( 
) ) =

2.4

0.62
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! 

" 2
=10.4 /9 degrees of freedom

! 

" 2 =
yi # y xi( )( )
$ xi( )

% 

& 
' ' 

( 

) 
* * 

i

n

+
2 If we have estimated the errors correctly,

(data-theory)/error ~1 per term (for a

normal distribution), so a “good” fit would

give a
%2 ~ #data points - #times data was used.



LLSF--Using Fit to interpolate

• Assume the last example was a calibration of a
voltage as a function of an ADC reading.

• For an arbitrary ADC reading (within the bounds
of our fit), how good is the calibration?
– = as good as the original data points nearby?

– = better?

• Hopefully better, since we have used all the
data to get the fit, so we should do better than
any individual measurment

• Will use propagation of errors to find uncertainly
of y(x,a0,a1,a2,…)

LLSF--Using Fit to interpolate (2)

! 

y(x,a0 ,a1) = a0 + a1x

dy(x,a0 ,a1) =
"y(x,a)

"ajj

# daj = 1da0 + xda1

$ 2
y (x, a0, a1 ) = dy(x,a0 ,a1)

2 = da0 + xda1( )
2

= $ 2
a0 + x2$ 2

a1 + 2x$ 2
a0a1

$y (x, a0, a1 ) = %00 + x2%11 + 2x%01

 %{ } = &{ }
'1

=
6.00 '1.02

'1.02 0.38

( 
) 
* 

+ 
, 
- 
  see previous slide

$y (x, a0, a1 ) = 6.00+ 0.38x2 ' 2.04x

 

!y(x)

x

•Recall that we fit between 0<x<10

•Within this range is interpolation

•Outside is extrapolation

•Not how error grows for x outside

this range!

•Our interpolating error ranges from

~2 (@x=~3) to ~5 @x=10

•y(x)=10+10x = original generator

Errors in original data

•(Sqrt(y), or ~3 at x=0 to ~11 @x=10



Non-Linear LSF- Log and other end-runs

• Note the parameters ai do NOT appear linearly

– Appears our formulism fails!

• However we can transform the original equations

into a new form where new parameters (log(a1)

and a2) do appear in a linear manner

– Caveat: the data point errors are also transformed and

need to be handled carefully.

• If nothing is done-typical, then the low values of y will be

overweighted in fit .

! 

y = a1e
a2x

y =a1x
a2

! 

" log(y) = log(a1) + a2x and

" log(y) = log(a1) + a2 log(x).

Non-Linear LSF- Linearization

• Well since we know how to do linear fits, we will

expand y(x,aj) with respect to aj

! 

Let da j = a j " a j

0
,with a j

0 = constan t

y x,a( ) = y x,a
0( ) +

#y x,a0( )
#a j

da j

j

$ ,  and

% 2 =
y xi,a( ) " yi( )

2

& i

2

i

$ '

y xi,a
0( ) " yi +

#y x,a0( )
#a j

da j

j

$
( 

) 
* 
* 

+ 

, 
- 
- 

2

& i

2

i

$  .

• Note that y(x,a) is a linear function of the “daj”
which is what we will use the L-LSF mechanics
to solve.



Non-Linear LSF- Linearization (2)

• How it works.
– You need to supply the original values of a0

j

• This is the hard work.

– Once this is done, then the {&} matrix and ' vectors can be
calculated (same nomenclature as before)

– {&} is inverted to make {(},

• The linear parameters vector da= {(}'

• We make a1=a0+ da, the new estimate for the parameters

– This new a1 is plugged back where a0 was used before, and we calculate
new da= {(}' and so on.

– Continue iteration until some condition is satisfied.

» Maybe %2 < some limit

» Maybe da <<!a (the errors in the parameters)--my favorite

Example (reprise)



Chisquare Phenomenology
• Lets make a 2D Contour map of chiquare for

our favorite LSF to y(x)=a0+a1x
– Using data generated from y(x)=10+10x

– !i=6 (constant over all x)

ao

a1

contour step size is one unit of %2

Curvature matrix is

! 

"{ } =
0.302 0.798

0.798 4.702

# 
$ 
% 

& 
' 
( 

The ellipse is rotated because

the curvature matrix is not

diagonal

Chisquare Phenomenology (2)

• Same data as before !i=6=constant
– But fit to y(x)=b0+b1(x-5)

– Note we still have 2 parameters, but the functions are
different.

– When x=5, y(x)=b0.

• For a linear function, the center of the x range will be the
average value of the function (for equal errors,otherwise use
weighted mean)

ao

a1

contour step size is one unit of %2

Curvature matrix is now

! 

"{ } =
0.306 0

0 3.06

# 
$ 
% 

& 
' 
( 

The ellipse is rotated because

the curvature matrix is not

diagonal



Chisquare Phenomenology (3)
• Kind of cool, but no one really does this, but instead I wanted to

make a point about the %2 contours

• Lets see what happens to %2 when we increase a0 by its error !a0

starting from the minimum central value

ao

a1

The last step occurs because (00

is the inverse of &00.

So conclusion, is that a the

This is also true in previous

rotated ellipse, but you need to

re-optimize the other parameters

after step

! 

" 2
a

0

best +#
a

0
( ) =  " 2

a
0

best( ) +$
00
#
a

0

2

= " 2
a

0( ) +$
00
%

00
= " 2

a
0( ) +1

Simple Statistical analysis instead of fitting

• Sometimes it seems desirable not to try
and fit data, but instead calculate µ and
! by using standard mean and rms
calculations

– Reason is that LS fitting, especially non-
linear is prone to diverging

• use to mean computer crashes back in the
“good old days”

– Simple µ and ! always give an answer

• Sometimes not a good answer tho’!



Simple Statistical analysis instead of fitting (2)

• Consider a histogram of data h(xi)
– Can define the mean and ! by

– Issues
• What about background

– If flat, it doesn’t shift µ, but does dilute its statisical
significance

» However completely screws up the ! calculation

– Need to carefully subtract it, especially if it is sloping

• What about (lousy) statistics

– Really can be an issue with a large fluctuation at large xi
for !

! 

µ =
h(x

i
)x

i"
h(x

i
)"

 and  # =
h(x

i
)x

i

2"
h(x

i
)"
$µ2

Simple Statistical analysis instead of fitting (3)

• See LV Demo



Conclusion
• This wasn’t an exhaustive course on

statistics

– Maybe exhausting

• Hopefully you may come away with a

better appreciation on what the

underpinnings of all those neat software

packages.


